Search results
Results From The WOW.Com Content Network
atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity: joule per kelvin (J⋅K −1)
In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. [1] It is often marked with the double dagger (‡) symbol.
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
Ferromagnetism: A state of matter with spontaneous magnetization. Antiferromagnetism: A state of matter in which the neighboring spin are antiparallel with each other, and there is no net magnetization. Ferrimagnetism: A state in which local moments partially cancel. Altermagnetism: A state with zero net magnetization and spin-split electronic ...
The state is very brief, as the current in the damper winding quickly decays allowing the armature flux to enter the rotor poles only. The generator goes into transient state; in the transient state (′) the flux is still out of the field winding of the rotor. The transient state decays to steady-state in few cycles. [6]
In chemistry, a chemical oscillator is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes. They are a class of reactions that serve as an example of non-equilibrium thermodynamics with far-from-equilibrium behavior.
The cation transport number of the leading solution is then calculated as t + = z + c L A F I Δ t {\displaystyle t_{+}={\frac {z_{+}cLAF}{I\Delta t}}} where z + {\displaystyle z_{+}} is the cation charge, c the concentration, L the distance moved by the boundary in time Δ t , A the cross-sectional area, F the Faraday constant , and I the ...
In organometallic chemistry, a coordinatively unsaturated complex has fewer than 18 valence electrons and thus is susceptible to oxidative addition or coordination of an additional ligand. Unsaturation is characteristic of many catalysts. The opposite of coordinatively unsaturated is coordinatively saturated.