Search results
Results From The WOW.Com Content Network
is the molar mass of dry air, approximately 0.028 9652 in kg⋅mol −1. [note 1] is the Boltzmann constant, 1.380 649 × 10 −23 in J⋅K −1 [note 1] is the molecular mass of dry air, approximately 4.81 × 10 −26 in kg. [note 1]
Mathematically, density is defined as mass divided by volume: [1] =, where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume , [ 2 ] although this is scientifically inaccurate – this quantity is more ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
0.1 × ( 12 ÷ 8 ) = 0.15 grain per dscf when corrected to a gas having a specified reference CO 2 content of 12 volume %. Notes: Although ppmv and grains per dscf have been used in the above examples, concentrations such as ppbv (i.e., parts per billion by volume), volume percent, grams per dscm and many others may also be used.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...