Search results
Results From The WOW.Com Content Network
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
Basic arithmetic properties (zoom in for induction proofs) This article contains mathematical proofs for some properties of addition of the natural numbers: the additive identity, commutativity, and associativity. These proofs are used in the article Addition of natural numbers.
Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.
To prove the usual properties of addition, one must first define addition for the context in question. Addition is first defined on the natural numbers . In set theory , addition is then extended to progressively larger sets that include the natural numbers: the integers , the rational numbers , and the real numbers . [ 53 ] (
In mathematics, the notion of cancellativity (or cancellability) is a generalization of the notion of invertibility.. An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c.
The inverse element is the element that results in the identity element when combined with another element. For instance, the additive inverse of the number 6 is -6 since their sum is 0. [41] There are not only inverse elements but also inverse operations. In an informal sense, one operation is the inverse of another operation if it undoes the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers.