Search results
Results From The WOW.Com Content Network
The mesolimbic pathway, sometimes referred to as the reward pathway, is a dopaminergic pathway in the brain. [1] The pathway connects the ventral tegmental area in the midbrain to the ventral striatum of the basal ganglia in the forebrain. The ventral striatum includes the nucleus accumbens and the olfactory tubercle. [2]
The reward system (the mesocorticolimbic circuit) is a group of neural structures responsible for incentive salience (i.e., "wanting"; desire or craving for a reward and motivation), associative learning (primarily positive reinforcement and classical conditioning), and positively-valenced emotions, particularly ones involving pleasure as a core component (e.g., joy, euphoria and ecstasy).
Electrical brain stimulation and intracranial drug injections produce robust reward sensation due to a relatively direct activation of the reward circuitry. This activation is considered to be more direct than rewards produced by natural stimuli, as those signals generally travel through the more indirect peripheral nerves. [ 3 ]
The main dopaminergic pathways of the human brain. Dopaminergic pathways (dopamine pathways, dopaminergic projections) in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. [1]
The motivational system works largely by a reward–punishment mechanism. When a particular behavior is followed by favorable consequences, the reward mechanism in the brain is activated, which induces structural changes inside the brain that cause the same behavior to be repeated later, whenever a similar situation arises. Conversely, when a ...
The limbic loop is a functional pathway of the basal ganglia, in which the ventral pallidum is involved. It (and the internal globus pallidus and substantia nigra pars reticulata) receives input from the temporal lobes, and the hippocampus via the ventral striatum.
“The brain changes, and it doesn’t recover when you just stop the drug because the brain has been actually changed,” Kreek explained. “The brain may get OK with time in some persons. But it’s hard to find a person who has completely normal brain function after a long cycle of opiate addiction, not without specific medication treatment.”
Neurobiologists have often had great difficulty distinguishing the VTA in humans and other primate brains from the substantia nigra (SN) and surrounding nuclei. Originally, the ventral tegmental area was designated as a ‘nucleus’, but over time ‘area’ became the more appropriate term used because of the heterogeneous cytoarchitectonic features of the region and the lack of clear ...