When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron bomb - Wikipedia

    en.wikipedia.org/wiki/Neutron_bomb

    The intense pulse of high-energy neutrons generated by a neutron bomb is the principal killing mechanism, not the fallout, heat or blast. The inventor of the neutron bomb, Sam Cohen, criticized the description of the W70 as a neutron bomb since it could be configured to yield 100 kilotons: the W-70 ... is not even remotely a "neutron bomb."

  3. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  4. Effects of nuclear explosions on human health - Wikipedia

    en.wikipedia.org/wiki/Effects_of_nuclear...

    The medical effects of the atomic bomb upon humans can be put into the four categories below, with the effects of larger thermonuclear weapons producing blast and thermal effects so large that there would be a negligible number of survivors close enough to the center of the blast who would experience prompt/acute radiation effects, which were observed after the 16 kiloton yield Hiroshima bomb ...

  5. Radiation damage - Wikipedia

    en.wikipedia.org/wiki/Radiation_damage

    Most of the radiolytic activity occurs in the core of the reactor where the neutron flux is highest; the bulk of energy is deposited in water from fast neutrons and gamma radiation, the contribution of thermal neutrons is much lower. In air-free water, the concentration of hydrogen, oxygen, and hydrogen peroxide reaches steady state at about ...

  6. Ionizing radiation - Wikipedia

    en.wikipedia.org/wiki/Ionizing_radiation

    In the adjacent diagram, a neutron collides with a proton of the target material, and then becomes a fast recoil proton that ionizes in turn. At the end of its path, the neutron is captured by a nucleus in an (n,γ)-reaction that leads to the emission of a neutron capture photon. Such photons always have enough energy to qualify as ionizing ...

  7. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

  8. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...

  9. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.