When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...

  3. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version. Listed below is a circular orbit in astrodynamics or ...

  4. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    ISS. The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    t. e. Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation.

  6. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    v. t. e. In astrodynamics, the vis-viva equation, also referred to as orbital-energy-invariance law or Burgas formula[ 1 ][better source needed], is one of the equations that model the motion of orbiting bodies. It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is ...

  7. Torricelli's law - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_law

    Torricelli's law, also known as Torricelli's theorem, is a theorem in fluid dynamics relating the speed of fluid flowing from an orifice to the height of fluid above the opening. The law states that the speed of efflux of a fluid through a sharp-edged hole in the wall of the tank filled to a height above the hole is the same as the speed that a ...

  8. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    Einstein's formula for change in mass translates to its simplest ΔE = Δmc 2 form, however, only in non-closed systems in which energy is allowed to escape (for example, as heat and light), and thus invariant mass is reduced. Einstein's equation shows that such systems must lose mass, in accordance with the above formula, in proportion to the ...

  9. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    Rate equation. In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only ...