Search results
Results From The WOW.Com Content Network
All concrete Boolean algebras satisfy the laws (by proof rather than fiat), whence every concrete Boolean algebra is a Boolean algebra according to our definitions. This axiomatic definition of a Boolean algebra as a set and certain operations satisfying certain laws or axioms by fiat is entirely analogous to the abstract definitions of group ...
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
Boolean function; Boolean-valued function; Boolean-valued model; Boolean satisfiability problem; Boolean differential calculus; Indicator function (also called the characteristic function, but that term is used in probability theory for a different concept)
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...
For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...
The inclusion relation has a natural interpretation in various Boolean algebras: in the subset algebra, the subset relation; in arithmetic Boolean algebra, divisibility; in the algebra of propositions, material implication; in the two-element algebra, the set { (0,0), (0,1), (1,1) }. Some useful properties of the inclusion relation are:
Boolean algebra can refer to: A calculus for the manipulation of truth values (T and F). A complemented distributive lattice. These can be used to model the operations on truth values. Boolean algebra is intimately related to propositional logic (sentential logic) as well.
Boolean domain, a set consisting of exactly two elements whose interpretations include false and true; Boolean circuit, a mathematical model for digital logical circuits. Boolean expression, an expression in a programming language that produces a Boolean value when evaluated; Boolean function, a function that determines Boolean values or operators