Search results
Results From The WOW.Com Content Network
These two perspectives—kinetics and thermodynamics, respectively—can be conceptually synthesized in an "energy landscape" paradigm: [4] highly populated states and the kinetics of transitions between them can be described by the depths of energy wells and the heights of energy barriers, respectively. Kinesin walking on a microtubule.
Cell mechanics is a sub-field of biophysics that focuses on the mechanical properties and behavior of living cells and how it relates to cell function. [1] It encompasses aspects of cell biophysics , biomechanics , soft matter physics and rheology , mechanobiology and cell biology .
The cell cycle's goal is to precisely copy each organism's DNA and afterwards equally split the cell and its components between the two new cells. Four main stages occur in the eukaryotes. In G1, the cell is usually active and continues to grow rapidly, while in G2, the cell growth continues while protein molecules become ready for separation.
The terminal cell elongates more than the deeper cells; then the production of a lateral bisector takes place in the inner fluid, which tends to divide the cell into two parts, of which the deeper one remains stationary, while the terminal part elongates again, forms a new inner partition, and so on.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
In 1903, Nikolai K. Koltsov proposed that the shape of cells was determined by a network of tubules that he termed the cytoskeleton. The concept of a protein mosaic that dynamically coordinated cytoplasmic biochemistry was proposed by Rudolph Peters in 1929 [12] while the term (cytosquelette, in French) was first introduced by French embryologist Paul Wintrebert in 1931.
The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded, [3] indicating that protein dynamics are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality.
In other words, if a system with twice as many atoms is simulated then it would take between two and four times as much computing power. On the other hand, the simplest ab initio calculations typically scale O(n 3) or worse (restricted Hartree–Fock calculations have been suggested to scale ~O(n 2.7)). To overcome the limit, a small part of ...