When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Velocity potential - Wikipedia

    en.wikipedia.org/wiki/Velocity_potential

    A velocity potential is not unique. If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the ...

  3. Brunt–Väisälä frequency - Wikipedia

    en.wikipedia.org/wiki/Brunt–Väisälä_frequency

    The Brunt–Väisälä frequency commonly appears in the thermodynamic equations for the atmosphere and in the structure of stars. Trajectory of a parcel of fluid displaced by 1m in an unstably stratified fluid of Brunt-Väisälä frequency N 2 = −1/ s 2 Oscillations of a parcel of fluid initially displaced by 1m in a stably stratified fluid ...

  4. Potential temperature - Wikipedia

    en.wikipedia.org/wiki/Potential_temperature

    The concept of potential temperature applies to any stratified fluid. It is most frequently used in the atmospheric sciences and oceanography. [2] The reason that it is used in both fields is that changes in pressure can result in warmer fluid residing under colder fluid – examples being dropping air temperature with altitude and increasing water temperature with depth in very deep ocean ...

  5. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Velocity vectors. Close-up view of one quadrant of the flow. Colors: pressure field. Red is high and blue is low. Velocity vectors. Pressure field (colors), stream function (black) with contour interval of 0.2Ur from bottom to top, velocity potential (white) with contour interval 0.2Ur from left to right.

  6. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  8. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...

  9. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    On the other hand, in a frame of reference moving with the mean velocity U (so the mean velocity as observed from this reference frame is zero), the angular frequency is different. It is called the intrinsic angular frequency (or relative angular frequency), denoted σ. So in pure wave motion, with U = 0, both frequencies ω and σ are equal.