Search results
Results From The WOW.Com Content Network
In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value (9.80665 m/s 2), it corresponds to a constant work or potential energy difference of 9.80665 joules.
GeographicLib provides a utility GeoidEval (with source code) to evaluate the geoid height for the EGM84, EGM96, and EGM2008 Earth gravity models. Here is an online version of GeoidEval . The Tracker Component Library from the United States Naval Research Laboratory is a free Matlab library with a number of gravitational synthesis routines.
Potential is expressed as gravity times distance, m 2 ·s −2. Travelling one metre in the direction of a gravity vector of strength 1 m·s −2 will increase your potential by 1 m 2 ·s −2 . Again employing G as a multiplier, the units can be changed to joules per kilogram of attracted mass.
Geopotential is the potential of the Earth's gravity field.For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
The change in potential energy moving from the surface (a distance from the center) to a height above the surface is = + = (+ /) If / is small, as it must be close to the surface where is constant, then this expression can be simplified using the binomial approximation + / to [()] As the gravitational field is = /, this reduces to Taking = at ...
An object at a certain height above the Moon's surface has less gravitational potential energy than at the same height above the Earth's surface because the Moon's gravity is weaker. "Height" in the common sense of the term cannot be used for gravitational potential energy calculations when gravity is not assumed to be a constant.
The back trajectories were evaluated using the constant equivalent potential temperatures. [7] In the mesoscale, equivalent potential temperature is also a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height,