Search results
Results From The WOW.Com Content Network
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
The usefulness of this heuristic especially depends on the question under consideration. In the empirical sciences , the so-called three-sigma rule of thumb (or 3 σ rule ) expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean, and thus it is empirically useful to treat 99.7% ...
The main criticism to the ROC curve described in these studies regards the incorporation of areas with low sensitivity and low specificity (both lower than 0.5) for the calculation of the total area under the curve (AUC)., [19] as described in the plot on the right.
Approximating the area under the curve y = x 2 over [0, 2] using the right Riemann sum. Notice that because the function is monotonically increasing, the right Riemann sum will always overestimate the area contributed by each term in the sum (and do so maximally).
The curve was studied by Pierre de Fermat in his 1659 treatise on quadrature. In it, Fermat computes the area under the curve and (without details) claims that the same method extends as well to the cissoid of Diocles. Fermat writes that the curve was suggested to him "ab erudito geometra" [by a learned geometer]. [16]
Area under the curve. Add languages. Add links. Article; Talk; English. Read; Edit; View history; Tools. ... Text is available under the Creative Commons Attribution ...
The Partial Area Under the ROC Curve (pAUC) is a metric for the performance of binary classifier. It is computed based on the receiver operating characteristic (ROC) curve that illustrates the diagnostic ability of a given binary classifier system as its discrimination threshold is varied.
In qualitative terms, a line integral in vector calculus can be thought of as a measure of the total effect of a given tensor field along a given curve. For example, the line integral over a scalar field (rank 0 tensor) can be interpreted as the area under the field carved out by a particular curve.