When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    The ring of 2×2 matrices with integer entries does not satisfy the zero-product property: if = and = (), then = () = =, yet neither nor is zero. The ring of all functions: [,], from the unit interval to the real numbers, has nontrivial zero divisors: there are pairs of functions which are not identically equal to zero yet whose product is the ...

  3. Empty product - Wikipedia

    en.wikipedia.org/wiki/Empty_product

    In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.

  4. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    The multiplicative identity of R[x] is the polynomial x 0; that is, x 0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism ev r : R[x] → R such that ev r (x) = r. Because ev r is unital ...

  5. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0 XY : X → Y is the zero morphism among morphisms from X to Y, and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0 XY = 0 XB and 0 XY ∘ f = 0 AY.

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/f is holomorphic.

  7. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  8. Hadamard factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Hadamard_factorization_theorem

    Define the Hadamard canonical factors ():= = / Entire functions of finite order have Hadamard's canonical representation: [1] = = (/) where are those roots of that are not zero (), is the order of the zero of at = (the case = being taken to mean ()), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series = | | + converges.

  9. Bump function - Wikipedia

    en.wikipedia.org/wiki/Bump_function

    The Fourier transform of a bump function is a (real) analytic function, and it can be extended to the whole complex plane: hence it cannot be compactly supported unless it is zero, since the only entire analytic bump function is the zero function (see Paley–Wiener theorem and Liouville's theorem).