Search results
Results From The WOW.Com Content Network
In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors.It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.
The empty product on numbers and most algebraic structures has the value of 1 (the identity element of multiplication), just like the empty sum has the value of 0 (the identity element of addition). However, the concept of the empty product is more general, and requires special treatment in logic, set theory, computer programming and category ...
Since the empty category is vacuously a discrete category, a terminal object can be thought of as an empty product (a product is indeed the limit of the discrete diagram {X i}, in general). Dually, an initial object is a colimit of the empty diagram 0 → C and can be thought of as an empty coproduct or categorical sum.
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
The value of each is taken to be 1 (an empty product) when =. These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure. A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element).