Search results
Results From The WOW.Com Content Network
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Examples of MECE arrangements include categorizing people by year of birth (assuming all years are known), apartments by their building number, letters by postmark, and dice rolls. A non-MECE example would be categorization by nationality, because nationalities are neither mutually exclusive (some people have dual nationality) nor collectively ...
The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event
For example, when tossing an ordinary coin, one typically assumes that the outcomes "head" and "tail" are equally likely to occur. An implicit assumption that all outcomes are equally likely underpins most randomization tools used in common games of chance (e.g. rolling dice , shuffling cards , spinning tops or wheels, drawing lots , etc.).
When heads occurs, tails can't occur, or p (heads and tails) = 0, so the outcomes are also mutually exclusive. Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually ...
In this example: A depends on B and D. B depends on A and D. D depends on A, B, and E. E depends on D and C. C depends on E. In the domain of physics and probability , a Markov random field ( MRF ), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph .
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.