Search results
Results From The WOW.Com Content Network
For pairs of objects that are not both points, the distance can most simply be defined as the smallest distance between any two points from the two objects, although more complicated generalizations from points to sets such as Hausdorff distance are also commonly used. [6] Formulas for computing distances between different types of objects include:
There are exactly three unique locations within the search image where the template may fit: the left side of the image, the center of the image, and the right side of the image. To calculate the SAD values, the absolute value of the difference between each corresponding pair of pixels is used: the difference between 2 and 2 is 0, 4 and 1 is 3 ...
A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.
A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry . The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance.
The area in the target image with the minimal Hausdorff distance to the template, can be considered the best candidate for locating the template in the target. In computer graphics the Hausdorff distance is used to measure the difference between two different representations of the same 3D object [ 8 ] particularly when generating level of ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line = /. This distance can be found by first solving the linear systems {= + = /, and {= + = /, to get the coordinates of the intersection points. The solutions to the linear systems are the points