When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form

  3. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  5. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 / n for several a , then finding a subset of these whose product is a square.

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  7. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    For general-purpose factoring, ECM is the third-fastest known factoring method. The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra.

  8. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when ⁠ ⁠ is a square. But it then suffices to go back to the previous gcd term, where gcd ( z , n ) = 1 {\displaystyle \gcd(z,n)=1} , and use the regular ρ algorithm from there.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS ). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a ).