When.com Web Search

  1. Ad

    related to: steel strain hardening exponent

Search results

  1. Results From The WOW.Com Content Network
  2. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain, or ...

  3. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Steel may be work hardened by deformation at low temperature, called cold working. Typically, an increase in cold work results in a decrease in the strain hardening exponent [citation needed]. Similarly, high strength steels tend to exhibit a lower strain hardening exponent [citation needed].

  4. Forming limit diagram - Wikipedia

    en.wikipedia.org/wiki/Forming_limit_diagram

    Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...

  5. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.

  6. Hardening (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Hardening_(metallurgy)

    Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

  7. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Here, n is the strain-hardening exponent and K is the strength coefficient. n is a measure of a material's work hardening behavior. Materials with a higher n have a greater resistance to necking. Typically, metals at room temperature have n ranging from 0.02 to 0.5. [3]

  8. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress.

  9. Flow stress - Wikipedia

    en.wikipedia.org/wiki/Flow_stress

    Where is flow stress, is a strength coefficient, is the plastic strain, and is the strain hardening exponent. Note that this is an empirical relation and does not model the relation at other temperatures or strain-rates (though the behavior may be similar).