When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    Diagram of the moment arm of a force F. The magnitude of the moment of a force at a point O, is equal to the perpendicular distance from O to the line of action of F, multiplied by the magnitude of the force: M = F · d, where F = the force applied d = the perpendicular distance from the axis to the line of action of the force. This ...

  3. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  4. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For an object to be in static equilibrium, not only must the sum of the forces be zero, but also the sum of the torques (moments) about any point. For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: Σ H = 0 and Σ V = 0 , and the torque a third equation: Σ τ = 0 .

  5. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...

  6. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the

  7. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In statics all forces and moments must balance to zero; the physical interpretation is that if they do not, the body is accelerating and the principles of statics do not apply. In dynamics the resultant forces and moments can be non-zero. Free body diagrams may not represent an entire physical body. Portions of a body can be selected for analysis.

  8. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    In statics and structural mechanics, a structure is statically indeterminate when the equilibrium equations – force and moment equilibrium conditions – are insufficient for determining the internal forces and reactions on that structure. [1] [2]

  9. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).