Search results
Results From The WOW.Com Content Network
For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3] Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The saturated vapor pressure over water in the temperature range of −100 °C to −50 °C is only extrapolated [Translator's note: Supercooled liquid water is not known to exist below −42 °C]. The values have various units (Pa, hPa or bar), which must be considered when reading them.
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Specific heat capacity of water [2] The variation can be ignored in contexts when working with objects in narrow ranges of temperature and pressure. For example, the heat capacity of a block of iron weighing one pound is about 204 J/K when measured from a starting temperature T = 25 °C and P = 1 atm of pressure.
List of orders of magnitude for specific heat capacity; SI prefix Factor Value J·kg −1 ·K −1 Item Deca-10 1: 94 Radon: Hecto-10 2: 120 Uranium: 129 Gold: 130 Iridium: Osmium: 139 Mercury: 145 Iodine: 158 Xenon: 240 Caesium: 246 Ethanol: 248 Krypton: 363 Rubidium: 377.48 Brass: 385 Copper: 420 Cobalt: 444 Iron: 480 Bromine: Chlorine: 502 ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds
That same year, James Prescott Joule suggested to Thomson that the true formula for Carnot's function was [20] = +, where is "the mechanical equivalent of a unit of heat", [21] now referred to as the specific heat capacity of water, approximately 771.8 foot-pounds force per degree Fahrenheit per pound (4,153 J/K/kg). [22]