Search results
Results From The WOW.Com Content Network
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
V – specific volume in cubic decimeters per kilogram (1 dm 3 is equivalent to 1 liter) H – specific enthalpy in kilojoules per kilogram; U – specific internal energy in kilojoules per kilogram; S – specific entropy in kilojoules per kilogram-kelvin; c p – specific heat capacity at constant pressure in kilojoules per kilogram-kelvin
For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3] Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common ...
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ⋅Θ −1. Therefore, the SI unit J/K is equivalent to kilogram meter squared per second squared per kelvin (kg⋅m 2 ⋅s −2 ⋅K −1 ).
They also explain its exceptionally high specific heat capacity (about 4.2 J/(g·K)), heat of fusion (about 333 J/g), heat of vaporization (2257 J/g), and thermal conductivity (between 0.561 and 0.679 W/(m·K)). These properties make water more effective at moderating Earth's climate, by storing heat and transporting it between the oceans and ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds
List of orders of magnitude for specific heat capacity; SI prefix Factor Value J·kg −1 ·K −1 Item Deca-10 1: 94 Radon: Hecto-10 2: 120 Uranium: 129 Gold: 130 Iridium: Osmium: 139 Mercury: 145 Iodine: 158 Xenon: 240 Caesium: 246 Ethanol: 248 Krypton: 363 Rubidium: 377.48 Brass: 385 Copper: 420 Cobalt: 444 Iron: 480 Bromine: Chlorine: 502 ...