Search results
Results From The WOW.Com Content Network
The cosmic microwave background was first predicted in 1948 by Ralph Alpher and Robert Herman, in a correction [16] they prepared for a paper by Alpher's PhD advisor George Gamow. [17] Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K. [18]
1938: Walther Nernst re-estimates the cosmic ray temperature as 0.75 K. [2] 1946: The term "microwave" is first used in print in an astronomical context in an article "Microwave Radiation from the Sun and Moon" by Robert Dicke and Robert Beringer. 1946: Robert Dicke predicts a microwave background radiation temperature of 20 K (ref: Helge Kragh)
The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology.In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna.
The cosmic microwave background fluctuations are extremely faint, only one part in 100,000 compared to the 2.73 K average temperature of the radiation field. The cosmic microwave background radiation is a remnant of the Big Bang and the fluctuations are the imprint of density contrast in the early universe.
The mean ISW imprint 50 supervoids have on the Cosmic Microwave Background: [9] [clarification needed] color scale from -20 to +20 μK. One possible explanation of the cold spot is a huge void between us and the primordial CMB.
The spectral distortion in the cosmic microwave background (CMB) looks different depending on the moment in the universe's history where this black body was modified. At very early times where z > 10 6 {\displaystyle z>10^{6}} , any injection of energy emerges as a temperature shift in the black body.
A comparison of the sensitivity and resolution of WMAP with COBE and Penzias and Wilson's telescope, simulated data [1]. This list is a compilation of experiments measuring the cosmic microwave background (CMB) radiation anisotropies and polarization since the first detection of the CMB by Penzias and Wilson in 1964.
The inhomogeneities in the temperature of the cosmic background radiation recorded in this image from the satellite probe WMAP amount to no more than 10 −4 kelvins.. The Ehlers–Geren–Sachs theorem, published in 1968 by Jürgen Ehlers, P. Geren and Rainer K. Sachs, shows that if, in a given universe, all freely falling observers measure the cosmic background radiation to have exactly the ...