When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moser's trick - Wikipedia

    en.wikipedia.org/wiki/Moser's_trick

    One implication holds by the invariance of the integral by diffeomorphisms: = = =. For the converse, we apply Moser's trick to the family of volume forms := +.Since () =, the de Rham cohomology class [] vanishes, as a consequence of Poincaré duality and the de Rham theorem.

  3. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The converse of the theorem implies that a homothety transforms a line in a parallel line. Conversely, the direct statement of the intercept theorem implies that a geometric transformation is always a homothety of center O, if it fixes the lines passing through O and transforms every other line into a parallel line.

  4. Midpoint theorem (triangle) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(triangle)

    The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.

  5. Converse theorem - Wikipedia

    en.wikipedia.org/wiki/Converse_theorem

    In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.

  6. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle ) is equal to the sum of the areas of the squares on the other two sides.

  8. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    This self-duality in the statement is due to the usual modern way of writing the theorem. Historically, the theorem only read, "In a projective space, a pair of centrally perspective triangles is axially perspective" and the dual of this statement was called the converse of Desargues's theorem and was always referred to by that name. [4]

  9. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .