Search results
Results From The WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [ 1 ] : 411 of Feuerbach's theorem uses the converse theorem.
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
The converse relation does satisfy the (weaker) axioms of a semigroup with involution: () = and () =. [12] Since one may generally consider relations between different sets (which form a category rather than a monoid, namely the category of relations Rel ), in this context the converse relation conforms to the axioms of a dagger category (aka ...
The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...
Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...