Search results
Results From The WOW.Com Content Network
F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
In the image, the vector F 1 is the force experienced by q 1, and the vector F 2 is the force experienced by q 2. When q 1 q 2 > 0 the forces are repulsive (as in the image) and when q 1 q 2 < 0 the forces are attractive (opposite to the image). The magnitude of the forces will always be equal.
Invariance and unification of physical quantities both arise from four-vectors. [1] The inner product of a 4-vector with itself is equal to a scalar (by definition of the inner product), and since the 4-vectors are physical quantities their magnitudes correspond to physical quantities also.
The kinetic energy of a moving object is equal to the work required to bring it from rest to that speed, or the work the object can do while being brought to rest: net force × displacement = kinetic energy, i.e.,
The kilogram-force leads to an alternate, but rarely used unit of mass: the metric slug (sometimes mug or hyl) is that mass that accelerates at 1 m·s −2 when subjected to a force of 1 kgf. The kilogram-force is not a part of the modern SI system, and is generally deprecated, sometimes used for expressing aircraft weight, jet thrust, bicycle ...
Mathematically this invariance can be ensured in one of two ways: by treating the four-vectors as Euclidean vectors and multiplying time by √ −1; or by keeping time a real quantity and embedding the vectors in a Minkowski space. [55] In a Minkowski space, the scalar product of two four-vectors U = (U 0, U 1, U 2, U 3) and V = (V 0, V 1, V 2 ...
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]