When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: ... one would calculate the kinetic energy of an 80 kg mass ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  5. Inelastic collision - Wikipedia

    en.wikipedia.org/wiki/Inelastic_collision

    In such a collision, kinetic energy is lost by bonding the two bodies together. This bonding energy usually results in a maximum kinetic energy loss of the system. It is necessary to consider conservation of momentum: (Note: In the sliding block example above, momentum of the two body system is only conserved if the surface has zero friction.

  6. Ballistic pendulum - Wikipedia

    en.wikipedia.org/wiki/Ballistic_pendulum

    The initial kinetic energy of the system = (+) Taking the initial height of the pendulum as the potential energy reference ( U i n i t i a l = 0 ) {\displaystyle (U_{initial}=0)} , the final potential energy when the bullet-pendulum system comes to a stop ( K f i n a l = 0 ) {\displaystyle (K_{final}=0)} is given by U f i n a l = ( m b + m p ...

  7. Coefficient of restitution - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_restitution

    0 < e < 1: This is a real-world inelastic collision, in which some kinetic energy is dissipated. The objects rebound with a lower separation speed than the speed of approach. e = 1: This is a perfectly elastic collision, in which no kinetic energy is dissipated. The objects rebound with the same relative speed with which they approached.

  8. Specific kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Specific_kinetic_energy

    The specific kinetic energy of a system is a crucial parameter in understanding its dynamic behavior and plays a key role in various scientific and engineering applications. Specific kinetic energy is an intensive property, whereas kinetic energy and mass are extensive properties. The SI unit for specific kinetic energy is the joule per ...

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    For photons, this is the relation, discovered in 19th century classical electromagnetism, between radiant momentum (causing radiation pressure) and radiant energy. If the body's speed v is much less than c, then reduces to E = ⁠ 1 / 2 ⁠ m 0 v 2 + m 0 c 2; that is, the body's total energy is simply its classical kinetic energy (⁠ 1 / 2 ...