Search results
Results From The WOW.Com Content Network
A Koszul connection is a connection which defines directional derivative for sections of a vector bundle more general than the tangent bundle. Connections also lead to convenient formulations of geometric invariants, such as the curvature (see also curvature tensor and curvature form), and torsion tensor.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
Generalizing from geometrical symmetry in the previous section, one can say that a mathematical object is symmetric with respect to a given mathematical operation, if, when applied to the object, this operation preserves some property of the object. [15] The set of operations that preserve a given property of the object form a group.
In the 1950s Atle Selberg extended Cartan's definition of symmetric space to that of weakly symmetric Riemannian space, or in current terminology weakly symmetric space. These are defined as Riemannian manifolds M with a transitive connected Lie group of isometries G and an isometry σ normalising G such that given x , y in M there is an ...
the connection is torsion-free, i.e., T ∇ is zero, so that ∇ X Y − ∇ Y X = [X, Y]; parallel transport is an isometry, i.e., the inner products (defined using g) between tangent vectors are preserved. This connection is called the Levi-Civita connection. The term "symmetric" is often used instead of torsion-free for the first property.