Search results
Results From The WOW.Com Content Network
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
2 Two dimensional (polygons) Toggle Two dimensional (polygons) subsection. 2.1 Star polygons. 2.2 Families. ... Vertex figure; Peak – (n−3)-face; Ridge – (n−2 ...
Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools.
Although polygons are two-dimensional, through the system computer they are placed in a visual scene in the correct three-dimensional orientation. In computer graphics and computational geometry , it is often necessary to determine whether a given point P = ( x 0 , y 0 ) {\displaystyle P=(x_{0},y_{0})} lies inside a simple polygon given by a ...
A 2D geometric model is a geometric model of an object as a two-dimensional figure, usually on the Euclidean or Cartesian plane.. Even though all material objects are three-dimensional, a 2D geometric model is often adequate for certain flat objects, such as paper cut-outs and machine parts made of sheet metal.
A two-dimensional representation of the object is then created by "unfolding" the box, to view all of the interior walls. This produces two plans and four elevations. A simpler way to visualize this is to place the object on top of an upside-down bowl. Sliding the object down the right edge of the bowl reveals the right side view.
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),