When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zoeppritz equations - Wikipedia

    en.wikipedia.org/wiki/Zoeppritz_equations

    In geophysics and reflection seismology, the Zoeppritz equations are a set of equations that describe the partitioning of seismic wave energy at an interface, due to mode conversion. They are named after their author, the German geophysicist Karl Bernhard Zoeppritz , who died before they were published in 1919.

  3. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    The conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 degrees Celsius). At an ambient air pressure of 1 atmosphere (101.325 kPa), the general equation is: = / ()

  4. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...

  5. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...

  6. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    A different interpretation of the lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then give rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.

  7. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the ...

  8. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...

  9. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Integrating over a hemisphere then affords the flux perpendicular to a plane (F, [W/m 2]). Schwarzschild's equation is the formula by which you may calculate the intensity of any flux of electromagnetic energy after passage through a non-scattering medium when all variables are fixed, provided we know the temperature, pressure, and composition ...