Search results
Results From The WOW.Com Content Network
The theoretically optimal page replacement algorithm (also known as OPT, clairvoyant replacement algorithm, or Bélády's optimal page replacement policy) [3] [4] [2] is an algorithm that works as follows: when a page needs to be swapped in, the operating system swaps out the page whose next use will occur farthest in the future. For example, a ...
This phenomenon is commonly experienced when using the first-in first-out page replacement algorithm. In FIFO, the page fault may or may not increase as the page frames increase, but in optimal and stack-based algorithms like LRU, as the page frames increase, the page fault decreases. László Bélády demonstrated this in 1969. [1]
Bélády's algorithm is the optimal cache replacement policy, but it requires knowledge of the future to evict lines that will be reused farthest in the future. A number of replacement policies have been proposed which attempt to predict future reuse distances from past access patterns, [23] allowing them to approximate the optimal replacement ...
The method the operating system uses to select the page frame to reuse, which is its page replacement algorithm, is important to efficiency. The operating system predicts the page frame least likely to be needed soon, often through the least recently used (LRU) algorithm or an algorithm based on the program's working set. To further increase ...
Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Page replacement algorithm ...
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
Adaptive Replacement Cache (ARC) is a page replacement algorithm with better performance [1] than LRU (least recently used). This is accomplished by keeping track of both frequently used and recently used pages plus a recent eviction history for both. The algorithm was developed [2] at the IBM Almaden Research Center.
Thrashing occurs when there are too many pages in memory, and each page refers to another page. Real memory reduces its capacity to contain all the pages, so it uses 'virtual memory'. When each page in execution demands that page that is not currently in real memory (RAM) it places some pages on virtual memory and adjusts the required page on RAM.