Search results
Results From The WOW.Com Content Network
Thus, a d-variate distribution is defined to be mirror symmetric when its chiral index is null. The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2]
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
This list may not reflect recent changes. List of probability distributions * Symmetric probability distribution; A. Asymptotic distribution; C. Circular distribution;
If the uniform distributions have the same width w, the result is a triangular distribution, symmetric about its mean, on the support [a+c,a+c+2w]. The sum of two independent, equally distributed, uniform distributions U 1 (a,b)+U 2 (a,b) yields a symmetric triangular distribution on the support [2a,2b].
Such a continuous distribution is called multimodal (as opposed to unimodal). In symmetric unimodal distributions, such as the normal distribution, the mean (if defined), median and mode all coincide. For samples, if it is known that they are drawn from a symmetric unimodal distribution, the sample mean can be used as an estimate of the ...
This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution.
If we use instead of the normal distribution, e.g., the Irwin–Hall distribution, we obtain over-all a symmetric 4 parameter distribution, which includes the normal, the uniform, the triangular, the Student t and the Cauchy distribution. This is also more flexible than some other symmetric generalizations of the normal distribution.
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...