Search results
Results From The WOW.Com Content Network
Thus, a d-variate distribution is defined to be mirror symmetric when its chiral index is null. The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2]
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
If the uniform distributions have the same width w, the result is a triangular distribution, symmetric about its mean, on the support [a+c,a+c+2w]. The sum of two independent, equally distributed, uniform distributions U 1 (a,b)+U 2 (a,b) yields a symmetric triangular distribution on the support [2a,2b].
Frequency distribution: a table that displays the frequency of various outcomes in a sample. Relative frequency distribution: a frequency distribution where each value has been divided (normalized) by a number of outcomes in a sample (i.e. sample size). Categorical distribution: for discrete random variables with a finite set of values.
A bivariate, multimodal distribution Figure 4. A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution).
The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however ...
If we use instead of the normal distribution, e.g., the Irwin–Hall distribution, we obtain over-all a symmetric 4 parameter distribution, which includes the normal, the uniform, the triangular, the Student t and the Cauchy distribution. This is also more flexible than some other symmetric generalizations of the normal distribution.
A common special case is the symmetric Dirichlet distribution, where all of the elements making up the parameter vector have the same value. The symmetric case might be useful, for example, when a Dirichlet prior over components is called for, but there is no prior knowledge favoring one component over another.