Search results
Results From The WOW.Com Content Network
Iron(III) sulfate (or ferric sulfate), is a family of inorganic compounds with the formula Fe 2 (SO 4) 3 (H 2 O) n. A variety of hydrates are known, including the most commonly encountered form of "ferric sulfate". Solutions are used in dyeing as a mordant, and as a coagulant for industrial wastes. Solutions of ferric sulfate are also used in ...
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
In these cases the oxidation number (the same as the charge) of the metal ion is represented by a Roman numeral in parentheses immediately following the metal ion name. For example, in uranium(VI) fluoride the oxidation number of uranium is 6. Another example is the iron oxides. FeO is iron(II) oxide and Fe 2 O 3 is iron(III) oxide.
The formation of Fe(III)-EDTA (FeY) − can be described as follows: FeSO 4 ∙7H 2 O + K 2 H 2 Y + 1/4 O 2 → K[FeY(H 2 O)]. H 2 O + KHSO 4 + 5.5 H 2 O (1) [8]. Iron chelate has also been used as a bait in the chemical control of slugs, snails and slaters in agriculture in Australia and New Zealand.
Iron(II) selenate – FeSeO 4; Iron(II) sulfate – FeSO 4; Iron(III) chloride – FeCl 3; Iron(III) fluoride – FeF 3; Iron(III) oxalate – C 6 Fe 2 O 12; Iron(III) oxide – Fe 2 O 3; Iron(III) nitrate – Fe(NO 3) 3 (H 2 O) 9; Iron(III) sulfate – Fe 2 (SO 4) 3; Iron(III) thiocyanate – Fe(SCN) 3; Iron(II,III) oxide – Fe 3 O 4; Iron ...
Fenton's reagent is a solution of hydrogen peroxide (H 2 O 2) and an iron catalyst (typically iron(II) sulfate, FeSO 4). [1] It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene and tetrachloroethylene (perchloroethylene).
The −1 occurs because each carbon is bonded to one hydrogen atom (a less electronegative element), and the − 1 / 5 because the total ionic charge of −1 is divided among five equivalent carbons. Again this can be described as a resonance hybrid of five equivalent structures, each having four carbons with oxidation state −1 and ...