When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column. RQ decomposition is Gram–Schmidt orthogonalization of rows of A, started from the last row.

  3. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  5. RRQR factorization - Wikipedia

    en.wikipedia.org/wiki/RRQR_factorization

    An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The set of n × n orthogonal matrices, under multiplication, forms the group O(n), known as the orthogonal group. The subgroup SO( n ) consisting of orthogonal matrices with determinant +1 is called the special orthogonal group , and each of its elements is a special orthogonal matrix.

  8. Iwasawa decomposition - Wikipedia

    en.wikipedia.org/wiki/Iwasawa_decomposition

    If G=SL n (R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices with determinant 1, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal. For the case of n = 2, the Iwasawa decomposition of G = SL(2, R) is in terms of

  9. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix, [2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form.