Ad
related to: largest protostar in energy production- 2024 Progress Report
Supporting A Net-Zero Future While
Growing Value For Our Shareholders.
- What Is Hydrogen?
Explore The Versatility Of Hydrogen
Across Heat-Intensive Industries.
- Natural Gas Energy Source
Explore The Benefits Of Natural Gas
& How It Can Drive Projected Growth
- Carbon Capture & Storage
Providing Industry Solutions Needed
To Help Reduce Emissions. Read More
- 2024 Progress Report
Search results
Results From The WOW.Com Content Network
NGC 7538, near the more famous Bubble Nebula, is located in the constellation Cepheus.It is located about 9,100 light-years from Earth. It is home to the biggest yet discovered protostar which is about 300 times the size of the Solar System. [4]
The difference in energy production of this cycle, compared to the proton–proton chain reaction, is accounted for by the energy lost through neutrino emission. [22] CNO cycle is highly sensitive to temperature, with rates proportional to T^{16-20}, a 10% rise of temperature would produce a 350% rise in energy production.
A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution . [ 1 ] For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. [ 2 ]
The core then shrinks, heats up and develops a strong temperature gradient. The hydrogen shell, fusing via the temperature-sensitive CNO cycle, greatly increases its rate of energy production and the stars is considered to be at the foot of the red-giant branch. For a star the same mass as the sun, this takes approximately 2 billion years from ...
A star forms by accumulation of material that falls in to a protostar from a circumstellar disk or envelope. Material in the disk is cooler than the surface of the protostar, so it radiates at longer wavelengths of light producing excess infrared emission. As material in the disk is depleted, the infrared excess decreases.
The Eddington limit is the point beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars.
Mass loss is largest for high-luminosity stars with low surface gravity and enhanced levels of heavy elements in the photosphere. R136a1 loses 1.6 × 10 −4 M ☉ ( 3.21 × 10 18 kg/s ) per year, over a billion times more than the Sun loses, and is expected to have shed about 35 M ☉ since its formation.
Some old writings envisaged the star as a very young protostar or a massive pre-main-sequence star with an age of only 1 Myr and typically a circumstellar disk. [15] It has probably evolved from a hot, dense O9 main sequence star of 5–20 R ☉ (solar radii). [28] [30] [64] The star has evolved rapidly because of its high mass. The time spent ...