When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The total electric charge of the neutron is 0 e. This zero value has been tested experimentally, and the present experimental limit for the charge of the neutron is −2(8) × 10 −22 e, [6] or −3(13) × 10 −41 C. This value is consistent with zero, given the experimental uncertainties (indicated in parentheses).

  3. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  4. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  5. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    If a neutron turns into a proton and the energy of the decay is less than 0.782343 MeV, the difference between the masses of the neutron and proton multiplied by the speed of light squared, (such as rubidium-87 decaying to strontium-87), the average binding energy per nucleon will actually decrease.

  6. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    An up quark has electric charge ⁠+ + 2 / 3 ⁠ e, and a down quark has charge ⁠− + 1 / 3 ⁠ e, so the summed electric charges of proton and neutron are +e and 0, respectively. [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is ...

  7. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    The proton and neutron have nearly the same mass (938 MeV), [16] and may be regarded as one particle, the nucleon N(938),with two different charge states (proton +1, and neutron 0). [17] The proton's N (938) ground state and ∆ + (1232) excited state have different shapes. [ 18 ]

  8. Atomic number - Wikipedia

    en.wikipedia.org/wiki/Atomic_number

    The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element.

  9. Discovery of the neutron - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_the_neutron

    [8]: 25 Nevertheless, Rutherford had conjectured the existence of the deuteron, a +1 charge particle of mass 2, and the neutron, a neutral particle of mass 1. [32]: 396 The former is the nucleus of deuterium, discovered in 1931 by Harold Urey. [34] The mass of the hypothetical neutral particle would be little different from that of the proton.