Ad
related to: octet rule chemistry examples in real life book
Search results
Results From The WOW.Com Content Network
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...
Many rules in chemistry rely on electron-counting: Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen, 18-electron rule [2] in inorganic chemistry and organometallic chemistry of transition metals, Hückel's rule for the π-electrons of aromatic compounds,
In 1960, Linnett originated a modification to the octet rule, originally proposed by Lewis, concerning valence electrons. He proposed that the octet should be considered as a double quartet of electrons rather than as four pairs, and hence the theory became known as "Linnett double-quartet theory". Using this method, he was able to explain the ...
Valence Bond theory describes chemical bonding better than Lewis Theory, which states that atoms share or transfer electrons so that they achieve the octet rule. It does not take into account orbital interactions or bond angles, and treats all covalent bonds equally. [ 8 ]
In the case of phosphorus pentachloride (PCl 5), the example shown on the right, the central phosphorus atom is bonded to five chlorine atoms. In the traditional Lewis view, this violates the octet rule as the five phosphorus-chlorine bonds would result in a net ten electrons around the phosphorus atom.
Many oxyanions of elements in lower oxidation state obey the octet rule and this can be used to rationalize the formulae adopted. For example, chlorine(V) has two valence electrons so it can accommodate three electron pairs from bonds with oxide ions. The charge on the ion is +5 − 3 × 2 = −1, and so the formula is ClO − 3.
On the other hand, some compounds that are normally written with ionic bonds in order to conform to the octet rule, such as ozone O 3, nitrous oxide NNO, and trimethylamine N-oxide (CH 3) 3 NO, are found to be genuinely hypervalent. Examples of γ calculations for phosphate PO 3− 4 (γ(P) = 2.6, non-hypervalent) and orthonitrate NO 3−
Two atoms may conform to the rule of eight, or the octet rule, not only by the transfer of electrons from one atom to another, but also by sharing one or more pairs of electrons...Two electrons thus coupled together, when lying between two atomic centers, and held jointly in the shells of the two atoms, I have considered to be the chemical bond.