Search results
Results From The WOW.Com Content Network
In this Erlang example, the higher-order function or_else/2 takes a list of functions (Fs) and argument (X). It evaluates the function F with the argument X as argument. If the function F returns false then the next function in Fs will be evaluated. If the function F returns {false, Y} then the next function in Fs with argument Y will be evaluated.
In other words, a real-valued function of n real variables is a function : such that its domain X is a subset of R n that contains a nonempty open set. An element of X being an n-tuple (x 1, x 2, …, x n) (usually delimited by parentheses), the general notation for denoting functions would be f((x 1, x 2, …, x n)).
Scaling is useful for many reasons. It simplifies analysis both by reducing the number of parameters and by simply making the problem neater. Proper scaling may normalize variables, that is make them have a sensible unitless range such as 0 to 1. Finally, if a problem mandates numeric solution, the fewer the parameters the fewer the number of ...
The concept of binary function generalises to ternary (or 3-ary) function, quaternary (or 4-ary) function, or more generally to n-ary function for any natural number n. A 0-ary function to Z is simply given by an element of Z. One can also define an A-ary function where A is any set; there is one input for each element of A.
If a variable is only referenced by a single identifier, that identifier can simply be called the name of the variable; otherwise, we can speak of it as one of the names of the variable. For instance, in the previous example the identifier "total_count" is the name of the variable in question, and "r" is another name of the same variable.
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function ...
print length([2+1, 3*2, 1/0, 5-4]) fails under strict evaluation because of the division by zero in the third element of the list. Under lazy evaluation, the length function returns the value 4 (i.e., the number of items in the list), since evaluating it does not attempt to evaluate the terms making up the list.