Search results
Results From The WOW.Com Content Network
In mathematics, a Mersenne prime is a prime number that is one less than a power of two.That is, it is a prime number of the form M n = 2 n − 1 for some integer n.They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century.
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
The Lucas–Lehmer test works as follows. Let M p = 2 p − 1 be the Mersenne number to test with p an odd prime. The primality of p can be efficiently checked with a simple algorithm like trial division since p is exponentially smaller than M p. Define a sequence {} for all i ≥ 0 by
The original, called Mersenne's conjecture, was a statement by Marin Mersenne in his Cogitata Physico-Mathematica (1644; see e.g. Dickson 1919) that the numbers were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 (sequence A109461 in the OEIS), and were composite for all other positive integers n ≤ 257.
The following table lists the progression of the largest known prime number in ascending order. [4] Here M p = 2 p − 1 is the Mersenne number with exponent p, where p is a prime number. The longest record-holder known was M 19 = 524,287, which was the largest known prime for 144 years. No records are known prior to 1456. [citation needed]
Prime95, also distributed as the command-line utility mprime for FreeBSD and Linux, is a freeware application written by George Woltman.It is the official client of the Great Internet Mersenne Prime Search (GIMPS), a volunteer computing project dedicated to searching for Mersenne primes.
All Mersenne primes are of the form M p = 2 p − 1, where p is a prime number itself. The smallest Mersenne prime in this table is 2 1398269 − 1. The first column is the rank of the Mersenne prime in the (ordered) sequence of all Mersenne primes; [33] GIMPS has found all known Mersenne primes beginning with the 35th. #
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.