When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals. In a metal or semimetal, the Fermi level is inside of one or more allowed bands. In semimetals the bands are usually referred to as "conduction band" or "valence band" depending on whether ...

  4. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]

  5. Edge states - Wikipedia

    en.wikipedia.org/wiki/Edge_states

    The possible energy level of the material that provides the discrete energy values of all possible states in the energy profile diagram can be represented by solving the Hamiltonian of the system. This solution provides the corresponding energy eigenvalues and eigenvectors. Based on the energy eigenvalues, conduction band are the high energy ...

  6. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.

  7. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    The conduction band, above the Fermi level, is normally nearly completely empty. Because the valence band is so nearly full, its electrons are not mobile, and cannot flow as electric current. However, if an electron in the valence band acquires enough energy to reach the conduction band as a result of interaction with other electrons, holes ...

  8. Quasi Fermi level - Wikipedia

    en.wikipedia.org/wiki/Quasi_Fermi_level

    A quasi Fermi level is a term used in quantum mechanics and especially in solid state physics for the Fermi level (chemical potential of electrons) that describes the population of electrons separately in the conduction band and valence band, when their populations are displaced from equilibrium.

  9. Band offset - Wikipedia

    en.wikipedia.org/wiki/Band_offset

    The band offsets are determined by two kinds of factors for the interface, the band discontinuities and the built-in potential. These discontinuities are caused by the difference in band gaps of the semiconductors and are distributed between two band discontinuities, the valence-band discontinuity, and the conduction-band discontinuity.