Search results
Results From The WOW.Com Content Network
Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring, which requires less than 2 log 2 k matrix multiplications, and is therefore much more ...
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
The restriction simplifies the explanation, and analysis of complexity, but is not actually necessary; [12] and in fact, padding the matrix as described will increase the computation time and can easily eliminate the fairly narrow time savings obtained by using the method in the first place. A good implementation will observe the following:
The lower bound of multiplications needed is 2mn+2n−m−2 (multiplication of n×m-matrices with m×n-matrices using the substitution method, m⩾n⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34. [40] For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A , B , and C matrices which define the state-space realization. [ 4 ]
A slight variation on the idea of diagonal dominance is used to prove that the pairing on diagrams without loops in the Temperley–Lieb algebra is non-degenerate. [3] For a matrix with polynomial entries, one sensible definition of diagonal dominance is if the highest power of q {\displaystyle q} appearing in each row appears only on the diagonal.
A first-order matrix difference equation with constant term can be written as + = +, where A is n × n and y and c are n × 1.This system converges to its steady-state level of y if and only if the absolute values of all n eigenvalues of A are less than 1.