Search results
Results From The WOW.Com Content Network
Hyperintensities are commonly divided into 3 types depending on the region of the brain where they are found. Deep white matter hyperintensities occur deep within white matter, periventricular white matter hyperintensities occur adjacent to the lateral ventricles and subcortical hyperintensities occur in the basal ganglia. [citation needed]
Alcohol-related brain damage [1] [2] alters both the structure and function of the brain as a result of the direct neurotoxic effects of alcohol intoxication or acute alcohol withdrawal. Increased alcohol intake is associated with damage to brain regions including the frontal lobe , [ 3 ] limbic system , and cerebellum , [ 4 ] with widespread ...
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison to the average population.
Cerebral hypoxia is a form of hypoxia (reduced supply of oxygen), specifically involving the brain; when the brain is completely deprived of oxygen, it is called cerebral anoxia. There are four categories of cerebral hypoxia; they are, in order of increasing severity: diffuse cerebral hypoxia (DCH), focal cerebral ischemia , cerebral infarction ...
White matter hyperintensities can be caused by a variety of factors, including ischemia, micro-hemorrhages, gliosis, damage to small blood vessel walls, breaches of the barrier between the cerebrospinal fluid and the brain, or loss and deformation of the myelin sheath.
Histotoxic hypoxia (also called histoxic hypoxia) is the inability of cells to take up or use oxygen from the bloodstream, despite physiologically normal delivery of oxygen to such cells and tissues. [1]
A cell containing Pappenheimer bodies is a siderocyte. Reticulocytes often contain Pappenheimer bodies. They are mostly observed in diseases such as myelodysplastic syndrome (MDS), sideroblastic anemia, hemolytic anemia, lead poisoning and sickle cell disease. They can interfere with platelet counts when the analysis is performed by electro ...
Functional hyperaemia is an increase in blood flow to a tissue due to the presence of metabolites and a change in general conditions. When a tissue increases its activity, there is a well-characterized fall in the partial pressure of oxygen and pH, along with an increase in partial pressure of carbon dioxide, and a rise in temperature and the concentration of potassium ions.