When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Endosymbiont - Wikipedia

    en.wikipedia.org/wiki/Endosymbiont

    The most common examples of obligate endosymbiosis are mitochondria and chloroplasts; however, they do not reproduce via mitosis in tandem with their host cells. Instead, they replicate via binary fission, a replication process uncoupled from the host cells in which they reside.

  3. Symbiogenesis - Wikipedia

    en.wikipedia.org/wiki/Symbiogenesis

    Mitochondria and plastids contain their own ribosomes; these are more similar to those of bacteria (70S) than those of eukaryotes. [74] Proteins created by mitochondria and chloroplasts use N-formylmethionine as the initiating amino acid, as do proteins created by bacteria but not proteins created by eukaryotic nuclear genes or archaea. [75] [76]

  4. Plastid evolution - Wikipedia

    en.wikipedia.org/wiki/Plastid_evolution

    Chloroplasts and mitochondria also replicate semi-autonomously outside of the cell cycle replication system via binary fission. [12] Consistent with the theory, decreased genome size within the organelle and gene integration into the nucleus occurred. Chloroplasts genomes encode 50-200 proteins, compared to the thousands in cyanobacterium. [13]

  5. Symbiotic bacteria - Wikipedia

    en.wikipedia.org/wiki/Symbiotic_bacteria

    The theory of endosymbiosis, as known as symbiogenesis, provides an explanation for the evolution of eukaryotic organisms. According to the theory of endosymbiosis for the origin of eukaryotic cells, scientists believe that eukaryotes originated from the relationship between two or more prokaryotic cells approximately 2.7 billion years ago.

  6. Multicellular organism - Wikipedia

    en.wikipedia.org/wiki/Multicellular_organism

    Although such symbiosis is theorized to have occurred (e.g., mitochondria and chloroplasts in animal and plant cells—endosymbiosis), it has happened only extremely rarely and, even then, the genomes of the endosymbionts have retained an element of distinction, separately replicating their DNA during mitosis of the host species.

  7. Cellular compartment - Wikipedia

    en.wikipedia.org/wiki/Cellular_compartment

    With mitochondria, the cytosol has an oxidizing environment which converts NADH to NAD+. With these cases, the compartmentalization is physical. Another is to generate a specific micro-environment to spatially or temporally regulate a biological process. As an example, a yeast vacuole is normally acidified by proton transporters on the membrane.

  8. Plastid - Wikipedia

    en.wikipedia.org/wiki/Plastid

    For example, chloroplasts in plants and green algae have lost all phycobilisomes, the light harvesting complexes found in cyanobacteria, red algae and glaucophytes, but instead contain stroma and grana thylakoids. The glaucocystophycean plastid—in contrast to chloroplasts and rhodoplasts—is still surrounded by the remains of the ...

  9. Lynn Margulis - Wikipedia

    en.wikipedia.org/wiki/Lynn_Margulis

    The endosymbiosis theory of organogenesis became widely accepted in the early 1980s, after the genetic material of mitochondria and chloroplasts had been found to be significantly different from that of the symbiont's nuclear DNA. [24] In 1995, English evolutionary biologist Richard Dawkins had this to say about Lynn Margulis and her work: