Ad
related to: increasing and decreasing functions formula calculator with solution free
Search results
Results From The WOW.Com Content Network
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.
A function is unimodal if it is monotonically increasing up to some point (the mode) and then monotonically decreasing. When f {\displaystyle f} is a strictly monotonic function, then f {\displaystyle f} is injective on its domain, and if T {\displaystyle T} is the range of f {\displaystyle f} , then there is an inverse function on T ...
The first-derivative test depends on the "increasing–decreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.
A differentiable function f is (strictly) concave on an interval if and only if its derivative function f ′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope. [3] [4] Points where concavity changes (between concave and convex) are inflection points. [5]
The theorem states that if you have an infinite matrix of non-negative real numbers , such that the rows are weakly increasing and each is bounded , where the bounds are summable < then, for each column, the non decreasing column sums , are bounded hence convergent, and the limit of the column sums is equal to the sum of the "limit column ...
If a sequence is either increasing or decreasing it is called a monotone sequence. This is a special case of the more general notion of a monotonic function. The terms nondecreasing and nonincreasing are often used in place of increasing and decreasing in order to avoid any possible confusion with strictly increasing and strictly decreasing ...
If is a compact topological space, and () is a monotonically increasing sequence (meaning () + for all and ) of continuous real-valued functions on which converges pointwise to a continuous function :, then the convergence is uniform.