Search results
Results From The WOW.Com Content Network
Cohen's kappa coefficient (κ, lowercase Greek kappa) is a statistic that is used to measure inter-rater reliability (and also intra-rater reliability) for qualitative (categorical) items. [1] It is generally thought to be a more robust measure than simple percent agreement calculation, as κ takes into account the possibility of the agreement ...
This halves reliability estimate is then stepped up to the full test length using the Spearman–Brown prediction formula. There are several ways of splitting a test to estimate reliability. For example, a 40-item vocabulary test could be split into two subtests, the first one made up of items 1 through 20 and the second made up of items 21 ...
Scott's pi (named after William A Scott) is a statistic for measuring inter-rater reliability for nominal data in communication studies.Textual entities are annotated with categories by different annotators, and various measures are used to assess the extent of agreement between the annotators, one of which is Scott's pi.
R 2 L is given by Cohen: [1] =. This is the most analogous index to the squared multiple correlations in linear regression. [3] It represents the proportional reduction in the deviance wherein the deviance is treated as a measure of variation analogous but not identical to the variance in linear regression analysis. [3]
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...
A study estimates that approximately 97% of studies use as a reliability coefficient. [3] However, simulation studies comparing the accuracy of several reliability coefficients have led to the common result that is an inaccurate reliability coefficient. [42] [43] [6] [44] [45]
In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.
The Stuart–Maxwell test is different generalization of the McNemar test, used for testing marginal homogeneity in a square table with more than two rows/columns. [12] [13] [14] The Bhapkar's test (1966) is a more powerful alternative to the Stuart–Maxwell test, [15] [16] but it tends to be liberal. Competitive alternatives to the extant ...