Search results
Results From The WOW.Com Content Network
In atomic physics, a partial charge (or net atomic charge) is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds.
Each electron is said to experience less than the actual nuclear charge, because of shielding or screening by the other electrons. For each electron in an atom, Slater's rules provide a value for the screening constant, denoted by s, S, or σ, which relates the effective and actual nuclear charges as
Mulliken charges arise from the Mulliken population analysis [1] [2] and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR [3]) procedures. [4]
The effective atomic number Z eff, (sometimes referred to as the effective nuclear charge) of an electron in a multi-electron atom is the number of protons that this electron effectively 'sees' due to screening by inner-shell electrons. It is a measure of the electrostatic interaction between the negatively charged electrons and positively ...
The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = 10 −15 metre. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with atomic spectroscopy.
Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles ) are written in superscript, e.g., Na + is a sodium ion with charge number positive one (an electric charge of one elementary ...
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.