Search results
Results From The WOW.Com Content Network
The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein. With full-genome sequences available, structure prediction can be done more quickly through a ...
The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein. With full-genome sequences available, structure prediction can be done more quickly through a ...
General schema showing the relationships of the genome, transcriptome, proteome, and metabolome . A proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions.
The depth of the plasma proteome encompasses a dynamic range of more than 10 10 between the highest abundant protein (albumin) and the lowest (some cytokines) and is thought to be one of the main challenges for proteomics. [81] Temporal and spatial dynamics further complicate the study of human plasma proteome.
The classic DNA duplexes structure was initially described by Watson and Crick (and contributions of Rosalind Franklin). The DNA molecule is composed of three substances: a phosphate group, a pentose, and a nitrogen base (adenine, thymine, cytosine, or guanine). The DNA double helix structure is stabilized by hydrogen bonds formed between base ...
The epigenome is the supporting structure of the genome, including protein and RNA binders, alternative DNA structures, and chemical modifications on DNA. Epigenomics : Modern technologies include chromosome conformation by Hi-C , various ChIP-seq and other sequencing methods combined with proteomic fractionations, and sequencing methods that ...
Genome sizes and corresponding composition of six major model organisms as pie charts. The increase in genome size correlates with the vast expansion of noncoding (i.e., intronic, intergenic, and interspersed repeat sequences) and repeat DNA (e.g., satellite, LINEs, short interspersed nuclear element (SINEs), DNA (Alu sequence), in red) sequences in more complex multicellular organisms.
Representation of the relationship of degradomics to genomic, transcriptomic, and proteomic research approaches. Degradomics is a sub-discipline of biology encompassing all the genomic and proteomic approaches devoted to the study of proteases, their inhibitors, and their substrates on a system-wide scale.