When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()

  3. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  4. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    This is an application of Cavalieri's principle: volumes with equal-sized corresponding cross-sections are equal. Indeed, the area of the cross-section is the same as that of the corresponding cross-section of a sphere of radius h / 2 {\displaystyle h/2} , which has volume 4 3 π ( h 2 ) 3 = π h 3 6 . {\displaystyle {\frac {4}{3}}\pi \left ...

  5. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...

  6. Solid of revolution - Wikipedia

    en.wikipedia.org/wiki/Solid_of_revolution

    Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    This file represents the Cavalieri's Principle in action: if you have the same set of cross sections that only differ by a horizontal translation, you will get the same volume. In geometry , Cavalieri's principle , a modern implementation of the method of indivisibles , named after Bonaventura Cavalieri , is as follows: [ 1 ]

  8. Mathematical visualization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_visualization

    The Mandelbrot set, one of the most famous examples of mathematical visualization.. Mathematical phenomena can be understood and explored via visualization.Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).

  9. Volume - Wikipedia

    en.wikipedia.org/wiki/Volume

    In ancient times, volume was measured using similar-shaped natural containers. Later on, standardized containers were used. Some simple three-dimensional shapes can have their volume easily calculated using arithmetic formulas. Volumes of more complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary.