Search results
Results From The WOW.Com Content Network
Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia , including astrocytes and oligodendrocytes .
The first starts out with the expression of Pax6 in radial glial cells found primarily at the ventricular surface. In the next step, Pax6 is downregulated and Tbr2 is expressed as the cell differentiates into an intermediate progenitor cell. Likewise, in the final step, Tbr2 is extremely downregulated to undetectable levels as Tbr1 signals the ...
Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle. [5] [3] This mitosis occurs in the germinal neuroepithelium (or germinal zone), when a radial glial cell divides to produce the neuroblast. The neuroblast detaches from the ...
These early stem cells are called neuroepithelial cells (NEC)s, but soon take on a highly elongated radial morphology and are then known as radial glial cells (RGC)s. [3] RGCs are the primary stem cells of the mammalian CNS, and reside in the embryonic ventricular zone , which lies adjacent to the central fluid-filled cavity ( ventricular ...
The progenitor cells and radial glial cells respond to extracellular trophic factors - like ciliary neurotrophic factor (CNTF), cytokines or neuregulin 1 (NRG1) - that can determine whether the cells will differentiate into either neurons or glia. [5]
Neoplastic glial cells stained with an antibody against GFAP (brown), from a brain biopsy. While glial cells in the PNS frequently assist in regeneration of lost neural functioning, loss of neurons in the CNS does not result in a similar reaction from neuroglia. [18] In the CNS, regrowth will only happen if the trauma was mild, and not severe. [40]
The radial glial cells are disposed in planes perpendicular to the axes of ventricles. One of their processes abuts the pia mater , while the other is deeply buried in gray matter. Radial glia are mostly present during development, playing a role in neuron migration .
However, such mechanisms are disrupted upon genetic damage. Studies now suggest glioma formation may result from cellular insensitivity to regulatory growth factors and cell signals, like neurogenin, that would normally inhibit further proliferation of glial cells. [28]