Search results
Results From The WOW.Com Content Network
[2] [3] [4] Many organizations, including governments, publish and share their datasets. The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
In the real-world track, methods were trained to build interpretable predictive models for 14-day forecast counts of COVID-19 cases, hospitalizations, and deaths in New York State. These models were reviewed by a subject expert and assigned trust ratings and evaluated for accuracy and simplicity. The ranking of the methods was:
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
[4] Google Research Places: 10+ million images in 400+ scene classes, with 5000 to 30,000 images per class. 10,000,000 image, label 2018 [5] Zhou et al Ego 4D A massive-scale, egocentric dataset and benchmark suite collected across 74 worldwide locations and 9 countries, with over 3,670 hours of daily-life activity video.
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation. Tensorboard, the visualization kit associated with TensorFlow, also implements t-SNE (online version) The Julia package TSne implements t-SNE
Scatterplot of the data set. The Iris flower data set or Fisher's Iris data set is a multivariate data set used and made famous by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis. [1]