Search results
Results From The WOW.Com Content Network
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function f that maps a finite set S to itself, and any initial value x 0 in S , the sequence of iterated function values
The Rocha–Thatte algorithm is a general algorithm for detecting cycles in a directed graph by message passing among its vertices, based on the bulk synchronous message passing abstraction. This is a vertex-centric approach in which the vertices of the graph work together for detecting cycles.
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...
If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use of a disjoint-set data structure to detect cycles. Its running time is dominated by the time to sort all of the ...
An early exact algorithm for finding a Hamiltonian cycle on a directed graph was the enumerative algorithm of Martello. [3] A search procedure by Frank Rubin [5] divides the edges of the graph into three classes: those that must be in the path, those that cannot be in the path, and undecided. As the search proceeds, a set of decision rules ...
If a graph contains a "negative cycle" (i.e. a cycle whose edges sum to a negative value) that is reachable from the source, then there is no cheapest path: any path that has a point on the negative cycle can be made cheaper by one more walk around the negative cycle. In such a case, the Bellman–Ford algorithm can detect and report the ...
A Hamiltonian cycle in a directed graph is a cycle that passes through each vertex of the graph exactly once. The following Lparse program can be used to find a Hamiltonian cycle in a given directed graph if it exists; we assume that 0 is one of the vertices.
With this reweighting, a zero-weight cycle becomes trivial to detect: it exists if and only if the zero-weight edges do not form a directed acyclic graph. Therefore, the special case of the zero-weight cycle problem, on graphs with no negative cycle, has a polynomial-time algorithm. [1]